skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gaikwad, Apurva"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The geometric phase of an electronic wave function, also known as Berry phase, is the fundamental basis of the topological properties in solids. This phase can be tuned by modulating the band structure of a material, providing a way to drive a topological phase transition. However, despite significant efforts in designing and understanding topological materials, it remains still challenging to tune a given material across different topological phases while tracing the impact of the Berry phase on its quantum transport properties. Here, we report these two effects in a magnetotransport study of ZrTe5. By tuning the band structure with uniaxial strain, we use quantum oscillations to directly map a weak-to-strong topological insulator phase transition through a gapless Dirac semimetal phase. Moreover, we demonstrate the impact of the strain-tunable spin-dependent Berry phase on the Zeeman effect through the amplitude of the quantum oscillations. We show that such a spin-dependent Berry phase, largely neglected in solid-state systems, is critical in modeling quantum oscillations in Dirac bands of topological materials. 
    more » « less
  2. The origin of the seed magnetic field that is amplified by the galactic dynamo is an open question in plasma astrophysics. Aside from primordial sources and the Biermann battery mechanism, plasma instabilities have also been proposed as a possible source of seed magnetic fields. Among them, thermal Weibel instability driven by temperature anisotropy has attracted broad interests due to its ubiquity in both laboratory and astrophysical plasmas. However, this instability has been challenging to measure in a stationary terrestrial plasma because of the difficulty in preparing such a velocity distribution. Here, we use picosecond laser ionization of hydrogen gas to initialize such an electron distribution function. We record the 2D evolution of the magnetic field associated with the Weibel instability by imaging the deflections of a relativistic electron beam with a picosecond temporal duration and show that the measured k -resolved growth rates of the instability validate kinetic theory. Concurrently, self-organization of microscopic plasma currents is observed to amplify the current modulation magnitude that converts up to ~1% of the plasma thermal energy into magnetic energy, thus supporting the notion that the magnetic field induced by the Weibel instability may be able to provide a seed for the galactic dynamo. 
    more » « less